Search results for "Glial Cells"

showing 10 items of 19 documents

Dietary salt promotes ischemic brain injury and is associated with parenchymal migrasome formation

2018

Sodium chloride promotes vascular fibrosis, arterial hypertension, pro-inflammatory immune cell polarization and endothelial dysfunction, all of which might influence outcomes following stroke. But despite enormous translational relevance, the functional importance of sodium chloride in the pathophysiology of acute ischemic stroke is still unclear. In the current study, we show that high-salt diet leads to significantly worse functional outcomes, increased infarct volumes, and a loss of astrocytes and cortical neurons in acute ischemic stroke. While analyzing the underlying pathologic processes, we identified the migrasome as a novel, sodium chloride-driven pathomechanism in acute ischemic …

0301 basic medicineMalePathologyMacroglial CellsSodium ChlorideVascular MedicineBrain IschemiaMice0302 clinical medicineCytosolAnimal CellsMedicine and Health SciencesMedicineEndothelial dysfunctionStrokeNeuronsCerebral CortexCerebral IschemiaMultidisciplinaryQRPathophysiologyStrokeChemistryNeurologyPhysical SciencesImmunohistochemistryMedicineCellular Structures and OrganellesCellular TypesIntracellularResearch Articlemedicine.medical_specialtyScienceCerebrovascular DiseasesGlial Cells03 medical and health sciencesImmune systemIn vivoParenchymaAnimalscardiovascular diseasesVesiclesSodium Chloride DietaryMicroglial CellsNutritionIschemic StrokeOrganellesbusiness.industryChemical CompoundsBiology and Life SciencesCell Biologymedicine.diseaseDiet030104 developmental biologyCellular NeuroscienceAstrocytesBrain InjuriesSaltsbusiness030217 neurology & neurosurgeryNeurosciencePLoS ONE
researchProduct

The ladybird homeobox genes are essential for the specification of a subpopulation of neural cells

2004

AbstractIn Drosophila, neurons and glial cells are produced by neural precursor cells called neuroblasts (NBs), which can be individually identified. Each NB generates a characteristic cell lineage specified by a precise spatiotemporal control of gene expression within the NB and its progeny. Here we show that the homeobox genes ladybird early and ladybird late are expressed in subsets of cells deriving from neuroblasts NB 5-3 and NB 5-6 and are essential for their correct development. Our analysis revealed that ladybird in Drosophila, like their vertebrate orthologous Lbx1 genes, play an important role in cell fate specification processes. Among those cells that express ladybird are NB 5-6…

Cellular differentiationApoptosisAnimals Genetically ModifiedNeuroblastPrecursor cellGlial cellsmedicineHomeoboxAnimalsDrosophila ProteinsCell LineageMolecular BiologyBody PatterningGeneticsHomeodomain ProteinsNeuronsbiologyGene Expression Regulation DevelopmentalCell DifferentiationCell Biologybiology.organism_classificationLadybirdCell biologymedicine.anatomical_structureDrosophila melanogasternervous systemVentral nerve cordIdentity specificationHomeoboxNeurogliaDrosophilaDrosophila melanogasterCNSNeurogliaDrosophila ProteinTranscription FactorsDevelopmental BiologyDevelopmental Biology
researchProduct

Social stress during adolescence activates long-term microglia inflammation insult in reward processing nuclei

2018

The experience of social stress during adolescence is associated with higher vulnerability to drug use. Increases in the acquisition of cocaine self-administration, in the escalation of cocaine-seeking behavior, and in the conditioned rewarding effects of cocaine have been observed in rodents exposed to repeated social defeat (RSD). In addition, prolonged or severe stress induces a proinflammatory state with microglial activation and increased cytokine production. The aim of the present work was to describe the long-term effects induced by RSD during adolescence on the neuroinflammatory response and synaptic structure by evaluating different glial and neuronal markers. In addition to an inc…

0301 basic medicineMaleMacroglial CellsHippocampuslcsh:MedicineSocial SciencesCell CountPathology and Laboratory MedicineHippocampusSocial defeatMice0302 clinical medicineCocaineAnimal CellsConditioning PsychologicalMedicine and Health SciencesPsychologylcsh:ScienceImmune ResponseNeuronsMultidisciplinaryMicrogliaAnimal BehaviorBrainChemistrymedicine.anatomical_structureBehavioral PharmacologyAnimal SocialityPhysical SciencesMicrogliamedicine.symptomCellular TypesAnatomyResearch ArticleInfralimbic cortexImmunologyPsychological StressInflammationGlial CellsNucleus accumbensProinflammatory cytokine03 medical and health sciencesAlkaloidsSigns and SymptomsRewardDiagnostic MedicineRecreational Drug UseMental Health and PsychiatrymedicineAnimalsMicroglial CellsSocial stressPharmacologyInflammationBehaviorbusiness.industrylcsh:RChemical CompoundsBiology and Life SciencesCell Biology030104 developmental biologyAstrocytesCellular Neurosciencelcsh:QbusinessNeuroscienceZoology030217 neurology & neurosurgeryStress PsychologicalNeuroscience
researchProduct

Plasmalogens and cell-cell communication between retinal glial cells

2016

This is an abstract that was submitted for the 2016 ARVO Annual Meeting, held in Seattle, Wash., May 1-5, 2016.; Purpose: Plasmalogens (or ether-lipids) are a particular class of glycerophospholipids characterized by the presence of a vinyl-ether bond at the sn-1 position of the glycerol backbone and by the preferential esterification of polyunsaturated fatty acids (PUFAs) at the sn-2 position. Plasmalogens are found at high concentrations in retinal macroglial cells such as Müller cells and astrocytes. Müller cells and astrocytes are known to communicate by the way of intracellular calcium waves and gap junctions. Connexin 43 is the major protein of these communicating junctions. The aim o…

retinal glial cells[SDV.MHEP] Life Sciences [q-bio]/Human health and pathologyOrganes des sens[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionrétineSensory Organsglial cell[ SDV.MHEP.OS ] Life Sciences [q-bio]/Human health and pathology/Sensory Organs[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyAlimentation et NutritionFood and Nutritionophtalmologycellule gliale[SDV.MHEP.OS]Life Sciences [q-bio]/Human health and pathology/Sensory Organs[SDV.AEN]Life Sciences [q-bio]/Food and NutritionComputingMilieux_MISCELLANEOUS[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Impact of Elastin-Derived Peptide VGVAPG on Matrix Metalloprotease-2 and -9 and the Tissue Inhibitor of Metalloproteinase-1, -2, -3 and -4 mRNA Expre…

2018

Degradation products of elastin, i.e. elastin-derived peptides (EDPs), are involved in various physiological and pathological processes. EDPs are detectable in cerebrospinal fluid in healthy people and in patients after ischemic stroke. However, to date, no studies concerning the role of EDP in the nervous system were conducted. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) play important roles during the repair phases of cerebral ischemia, particularly during angiogenesis and reestablishment of cerebral blood flow. Therefore, the aim of this study was to investigate the impact of the specific elastin-derived peptide VGVAPG on Mmp-2, -9 and Timp-1, -2,…

0301 basic medicineTIMPsAngiogenesisGene ExpressionApoptosisReceptors Cell SurfaceMatrix metalloproteinaseToxicology03 medical and health sciencesMice0302 clinical medicineGlial cellsAnimalsRNA MessengerCells CulturedCerebral CortexGene knockdownbiologyL-Lactate DehydrogenaseMMP-2ChemistryCaspase 3General NeuroscienceTissue Inhibitor of MetalloproteinasesTissue inhibitor of metalloproteinasebeta-GalactosidaseIn vitroMatrix MetalloproteinasesCell biologyElastin-derived peptides030104 developmental biologyApoptosisVGVAPGbiology.proteinOriginal ArticleMMP-9ElastinNeurogliaOligopeptides030217 neurology & neurosurgeryFetal bovine serumNeurotoxicity research
researchProduct

Bi- and uniciliated ependymal cells define continuous floor-plate-derived tanycytic territories

2017

Multiciliated ependymal (E1) cells line the brain ventricles and are essential for brain homeostasis. We previously identified in the lateral ventricles a rare ependymal subpopulation (E2) with only two cilia and unique basal bodies. Here we show that E2 cells form a distinct biciliated epithelium extending along the ventral third into the fourth ventricle. In the third ventricle floor, apical profiles with only primary cilia define an additional uniciliated (E3) epithelium. E2 and E3 cells' ultrastructure, marker expression and basal processes indicate that they correspond to subtypes of tanycytes. Using sonic hedgehog lineage tracing, we show that the third and fourth ventricle E2 and E3 …

Male0301 basic medicineEpendymal CellScienceEpendymoglial CellsGene ExpressionGeneral Physics and AstronomyMice TransgenicS100 Calcium Binding Protein beta SubunitFourth ventricleArticleGeneral Biochemistry Genetics and Molecular BiologyNestinMice03 medical and health sciencesLateral ventriclesEpendymaGlial Fibrillary Acidic ProteinmedicineAnimalsHumansVimentinCell LineageHedgehog ProteinsCiliaSonic hedgehogAgedBrain VentricleFloor plateBrain MappingMultidisciplinaryThird ventriclebiologyQCD24 AntigenCell DifferentiationGeneral ChemistryAnatomyMiddle Aged030104 developmental biologymedicine.anatomical_structureCell Trackingbiology.proteinFemaleNerve NetEpendymaBiomarkersNature Communications
researchProduct

TLR4 participates in the transmission of ethanol-induced neuroinflammation via astrocyte-derived extracellular vesicles

2019

Background Current evidence indicates that extracellular vesicles (EVs) participate in intercellular signaling, and in the regulation and amplification of neuroinflammation. We have previously shown that ethanol activates glial cells through Toll-like receptor 4 (TLR4) by triggering neuroinflammation. Here, we evaluate if ethanol and the TLR4 response change the release and inflammatory content of astrocyte-derived EVs, and whether these vesicles are capable of communicating with neurons by spreading neuroinflammation. Methods Cortical neurons and astrocytes in culture were used. EVs were isolated from the extracellular medium of the primary culture of the WT and TLR4-KO astrocytes treated …

0301 basic medicineImmunologyInflammationlcsh:RC346-42903 medical and health sciencesCellular and Molecular NeuroscienceMice0302 clinical medicineWestern blotNeuroinflammationGlial cellsExtracellularmedicineAnimalsProtein Interaction MapsReceptorNeuroinflammationCells Culturedlcsh:Neurology. Diseases of the nervous systemInflammationMice KnockoutNeuronsmedicine.diagnostic_testEthanolChemistryGeneral NeuroscienceResearchExtracellular vesiclesCell biologyMice Inbred C57BLToll-Like Receptor 4030104 developmental biologymedicine.anatomical_structureNeurologyAstrocytesTLR4medicine.symptom030217 neurology & neurosurgeryIntracellularAstrocyteJournal of Neuroinflammation
researchProduct

Differential expression levels of Sox9 in early neocortical radial glial cells regulate the decision between stem cell maintenance and differentiation

2021

ABSTRACTRadial glial progenitor cells (RGCs) in the dorsal forebrain directly or indirectly produce excitatory projection neurons and macroglia of the neocortex. Recent evidence shows that the pool of RGCs is more heterogeneous than originally thought and that progenitor subpopulations can generate particular neuronal cell types. Using single cell RNA sequencing, we have studied gene expression patterns of two subtypes of RGCs that differ in their neurogenic behavior. One progenitor type rapidly produces postmitotic neurons, whereas the second progenitor remains relatively quiescence before generating neurons. We have identified candidate genes that are differentially expressed between thes…

Cell typeTranscription GeneticNeurogenesisEpendymoglial CellsGenetic VectorsNeocortexNerve Tissue ProteinsBiologyMiceradial glia cellsprogenitors diversityGenes ReporterPregnancyGene expressionmedicineAnimalscortical developmentProgenitors diversityCell Self RenewalProgenitor cellPromoter Regions GeneticTranscription factorResearch ArticlesInjections IntraventricularProgenitorNeuronsNeocortexCortical developmentGeneral NeuroscienceCell CycleGene Expression Regulation DevelopmentalSOX9 Transcription FactorEmbryonic stem cellCell biologyMice Inbred C57BLCorticogenesisElectroporationmedicine.anatomical_structureCerebral cortexForebrainFemalesense organsSingle-Cell AnalysisStem cellNeuroscienceNeurogliaRadial glia cellsCellular/MolecularSox9
researchProduct

Lipoprotein receptor loss in forebrain radial glia results in neurological deficits and severe seizures.

2020

The Alzheimer disease-associated multifunctional low-density lipoprotein receptor-related protein-1 is expressed in the brain. Recent studies uncovered a role of this receptor for the appropriate functioning of neural stem cells, oligodendrocytes, and neurons. The constitutive knock-out (KO) of the receptor is embryonically lethal. To unravel the receptors' role in the developing brain we generated a mouse mutant by specifically targeting radial glia stem cells of the dorsal telencephalon. The low-density lipoprotein receptor-related protein-1 lineage-restricted KO female and male mice, in contrast to available models, developed a severe neurological phenotype with generalized seizures duri…

0301 basic medicineMaleEpendymoglial CellsBiology03 medical and health sciencesCellular and Molecular NeuroscienceEpilepsyMice0302 clinical medicineProsencephalonSeizuresmedicineAnimalsReceptors LipoproteinLipoprotein receptor-related proteinmedicine.diseaseNeural stem cellLipoproteins LDL030104 developmental biologymedicine.anatomical_structureNeurologyAstrocytesTissue Plasminogen ActivatorForebrainFemaleSynaptic signalingStem cellPostsynaptic densityNeuroscience030217 neurology & neurosurgeryAstrocyteGliaREFERENCES
researchProduct

Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction

2016

Myelination of axons facilitates rapid impulse propagation in the nervous system. The axon/myelin-unit becomes impaired in myelin-related disorders and upon normal aging. However, the molecular cause of many pathological features, including the frequently observed myelin outfoldings, remained unknown. Using label-free quantitative proteomics, we find that the presence of myelin outfoldings correlates with a loss of cytoskeletal septins in myelin. Regulated by phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2)-levels, myelin septins (SEPT2/SEPT4/SEPT7/SEPT8) and the PI(4,5)P2-adaptor anillin form previously unrecognized filaments that extend longitudinally along myelinated axons. By confoca…

0301 basic medicineNervous systemCentral Nervous SystemProteomicsScaffoldMouseProteomeNeural ConductionSeptinNerve Fibers MyelinatedMyelinGene Knockout TechniquesMiceContractile ProteinsAxonBiology (General)CytoskeletonMicroscopy ImmunoelectronCytoskeletonMyelin SheathMicroscopy ConfocalGeneral NeuroscienceQRGeneral MedicineAnatomyCell biologyglial cellsmedicine.anatomical_structureGene TargetingMedicineResearch ArticleQH301-705.5ScienceCentral nervous systemmyelinated axonsmacromolecular substancesBiologyGeneral Biochemistry Genetics and Molecular Biologymyelin structure03 medical and health sciencesSeptin/anillin filaments; central nervous system; myelinlabel-free proteomicsmedicineAnimalsneuropathologyGeneral Immunology and Microbiology030104 developmental biologynervous systemseptin cytoskeletonProtein MultimerizationSeptinsSeptin cytoskeletonNeuroscienceeLife
researchProduct